Ci sono troppi ingegneri, ormai è un'emergenza nazionale. Purtroppo, però, anche un tempestivo intervento delle autorità competenti sarebbe del tutto vano, giacché vale il seguente
Teorema di densità degli ingegneri
Definizione 1: Si definisce ingegnere in potenza, e si indica con , un essere umano dotato delle conoscenze matematiche di un cucchiaino da tè e che rispetti le seguenti condizioni:
Il grado di verità di una frase dipende da quanto materiale serve per costruire un esempio, che comunque si costruisce solo se può avere un utilizzo pratico.
Un'equazione di grado n ha un certo numero di soluzioni, tutte considerabili più o meno intere.
Si indica con l'insieme degli ingegneri in potenza di un centro abitato . Appare altresì evidente che sempre, giacché .
Definizione 2: Si definisce partizione non palese di un centro abitato , e si indica con , un qualsiasi insieme di persone la cui cardinalità non sia evidente al primo sguardo.
Lemma 1: se
Dimostrazione: Sia per assurdo . Consideriamo ora l'insieme , con Se ora , allora contro le ipotesi. Se , considero . Se ora , assurdo, altrimenti si considera e si ragiona in modo analogo. CVD.
Lemma 2: Se .
Dimostrazione: In particolare per il Lemma 1. Ora, se , allora sarebbe perché per definizione , ma questo è assurdo perché per ipotesi. Allora , ed in particolare . CVD.
Definizione 3: Si definisce fermata della metropolitana, e si indica con , una famiglia di insiemi di punti di accumulazione per un sottoinsieme non vuoto .
Proposizione 1: è sia aperto che chiuso.
Dimostrazione: Com'è noto, il sottoinsieme di cardinalità maggiore contenuto in un insieme finito dato è l'insieme stesso: sia dunque l'insieme di cardinalità massima in . È immediato osservare che tale insieme sarà proprio , per le ragioni sopraesposte. Siccome da ogni copertura aperta di si può estrarre una sottocopertura finita per le proprietà della piastrellatura metropolitana, è compatto. Dunque per il teorema di Heine-Cantor la funzione "orario di esercizio" è uniformemente continua. Dunque per il teorema di Weierstrass. Siccome quando c'è un tale casino che , è aperto. Ma per costruzione cittadina anche è aperto; ne segue che è sia aperto che chiuso. CVD.
Proposizione 2: Se aperto,
Dimostrazione: Nella dimostrazione della Proposizione 1 abbiamo già avuto modo di definire la funzione che ammette massimo al tempo quando è aperto. Siccome è compatto, allora è chiuso e limitato, perciò è monotona. Nel momento , ogni elemento di è di accumulazione. Ma per definizione di gli elementi stessi sono insiemi di punti di accumulazione, quindi nel momento la situazione in diventa quasi insostenibile, e, ad uno sguardo disperato, emerge . CVD.
Definizione 4: Si definisce ingegnere, e si indica con , un ingegnere in potenza con una laurea in Ingegneria. Un ingegnere continua a non sapere la matematica e a credere che la caratteristica di un anello sia la quantità del materiale di cui esso è fatto, ma è dotato di un attestato che certifica l'esistenza di un isomorfismo tra se stesso e il succitato cucchiaino da tè. Pur ignorando, naturalmente, cosa sia un isomorfismo. Si indica con l'insieme di tutti gli ingegneri, e vale per definizione .
Teorema (debole) di densità:
Dimostrazione:Basta mostrare che . Fatto questo, il teorema è dimostrato, perché allora, per la Proposizione 2, segue la tesi.
Costruiamo dunque un ingegnere in una qualsiasi partizione non palese. Sia . Per il Lemma 1 . Si noti che l'unica differenza tra ed è il necessario per conseguire l'attestato cartaceo . Esiste una corrispondenza biunivoca tra e , data dall'isomorfismo laurea . Componendo , con ristretta a , otteniamo un'applicazione che localizza un ingegnere con la nella quale esso è contenuto se è aperto. Allora . Ma per la Proposizione 2, siccome è aperto, . Ora, . Per il Lemma 2 , e in particolare la tesi. CVD.
Sia l'insieme di tutte le persone. Vale il seguente
Teorema (forte) di densità: L'insieme degli ingegneri è denso in .
Dimostrazione: Il teorema di densità debole garantisce la densità di in . Osserviamo che la densità dipende dal comportamento della funzione . Studiamone il comportamento agli estremi del dominio:
essendo aperta sul dominio di e chiusa fuori di esso. Per il principio di conservazione del corpo della gente, devono esistere e si conserva in un intorno sinistro (rispettivamente destro) di e . Applicando un analogo ragionamento a tutti gli intervalli , ,..., per opportuno, e rispettivamente ,..., per si ha la densità di in , e, quindi, in . Il continuo flusso di ogni verso l'esterno di , necessario per definizione al corretto funzionamento di una fermata della metropolitana, garantisce l'estendibilità del ragionamento anche in nel mentre dell'orario di esercizio . CVD.